-
Bezhanishvili, N., Marra, V., McNeill, D., Pedrini, A. (2018) Tarski's theorem on intuitionistic logic, for polyhedra.Annals of Pure and Applied Logic, Vol. 169 (pp 373-391)Article | https://doi.org/10.1016/j.apal.2017.12.005 | UvA-DARE
-
Bezhanishvili, N., Marx, M. (2003) All proper normal extensions of s5-squared have the polynomial size model property.Studia Logica, Vol. 73 (pp 367-382)Article | UvA-DARE
-
Bezhanishvili, N., Moraschini, Tommaso (2022) Hereditarily Structurally Complete Intermediate Logics: Citkin’s Theorem Via Duality.Studia LogicaArticle | https://doi.org/10.1007/s11225-022-10012-7 | UvA-DARE
-
Bezhanishvili, N., Sourabh, S. (2017) Sahlqvist preservation for topological fixed-point logic.Journal of Logic and Computation, Vol. 27 (pp 679-703)Article | https://doi.org/10.1093/logcom/exv010 | UvA-DARE
-
Bezhanishvili, N., ten Cate, B., Marx, M., Viana, J.P. (2004) Sahlqvist theory and transfer results for hybrid logics.In Schmidt, R. Pratt-Hartman, I. (Eds.), Preliminary proceedings of Advances in Modal Logic 2004 (pp 44-61)Conference contribution | UvA-DAREBezhanishvili, N., ten Cate, B. (2004) Transfer results for hybrid logic - part i: the case without satisfaction operators.Internal Reports. Institute for Logic, Language and Computation.Working paper | UvA-DAREBezhanishvili, N., ten Cate, B. (2006) Transfer results for hybrid logic Part I: the case without the satisfaction operators.Journal of Logic and Computation, Vol. 16 (pp 177-197)Article | https://doi.org/10.1093/logcom/exi056 | UvA-DAREBezhanishvili, N., van der Hoek, W. (2014) Structures for epistemic logic.In Baltag, A. Smets, S. (Eds.), Johan van Benthem on Logic and Information Dynamics (pp 339-380) (Outstanding contributions to logic, Vol. 5). Springer.Chapter | https://doi.org/10.1007/978-3-319-06025-5_12 | UvA-DAREBezhanishvili, N. (2000) Varieties of Two-Dimensional Diagonal-Free Cylindric Algebras. Part I..Technical Reports. Institute for Logic, Language and Computation.Working paper | UvA-DAREBezhanishvili, N. (2002) Two-dimensional cylindric algebras.part ii.Technical Report. Institute for Logic, Language and Computation.Working paper | UvA-DAREBezhanishvili, N. (2002) Pseudomonadic algebras as algebraic models of doxastic modal logic.Mathematical Logic Quarterly, Vol. 48 (pp 624-636)Bezhanishvili, N. (2002) Varieties of two-dimensional cylindric algebras.Algebra Universalis, Vol. 48 (pp 11-42)Article | https://doi.org/10.1007/s00012-002-8203-2 | UvA-DAREBezhanishvili, N. (2004) De Jongh's characterization of intuitionistic propositional calculus.In Liber amicorum Dick de Jongh (pp 1-10). Amsterdam University Press.Chapter | UvA-DAREBezhanishvili, N. (2004) Varieties of two-dimensional cylindric algebras II.Algebra Universalis, Vol. 51 (pp 177-206)Article | https://doi.org/10.1007/s00012-004-1856-2 | UvA-DAREBezhanishvili, N. (2006) Lattices of intermediate and cylindric modal logics.Institute for Logic, Language and Computation.Thesis, fully internal | UvA-DAREBhargav, S., van Noord, N., Kamps, J. (2019) Deep learning as a tool for early cinema analysis.In SUMAC '19: proceedings of the 1st Workshop on Structuring and Understanding of Multimedia Heritage Contents : October 21, 2019, Nice, France (pp 61-68). The Association for Computing Machinery.Conference contribution | https://doi.org/10.1145/3347317.3357240 | UvA-DAREBiagioli, C., Grossi, D. (2009) Formalizzazione del modello DAO.In Biagioli, C. (Eds.), Modelli funzionali delle leggi: Verso testi legislativi autoesplicativi (pp 145-152) (Series in legal information and communication technologies). European Press Academic Publishing.Chapter | UvA-DAREBiderman, S., Schoelkopf, H., Anthony, Q., Bradley, H., O'Brien, K., Hallahan, E., Khan, M.A., Purohit, S., Sai Prashanth, U.S., Raff, E., Skowron, A., Sutawika, L., van der Wal, O. (2023) Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling.Proceedings of Machine Learning Research, Vol. 202 (pp 2397-2430)Bílková, M., de Jongh, D., Joosten, J.J. (2009) Interpretability in PRA.Annals of Pure and Applied Logic, Vol. 161 (pp 128-138)Article | https://doi.org/10.1016/j.apal.2009.05.012 | UvA-DAREBílková, M., Palmigiano, A., Venema, Y. (2008) Proof systems for the coalgebraic cover modality.In Areces, C. Goldblatt, R. (Eds.), Advances in Modal Logic 7 (pp 1-21). College Publications.Conference contribution | http://www.aiml.net/volumes/volume7/Bilkova-Palmigiano-Venema.pdf | UvA-DARE
The data of this list is taken from the Pure database. If you find output is missing from the list, please follow the previous link to find out how to submit to Pure. In case there are mistakes in PURE, please contact illc at uva.nl