-
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J. (2018) A new proof of the McKinsey-Tarski Theorem.Studia Logica, Vol. 106 (pp 1291-1311)Article | https://doi.org/10.1007/s11225-018-9789-5 | UvA-DARE
-
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J. (2019) On modal logics arising from scattered locally compact Hausdorff spaces.Annals of Pure and Applied Logic, Vol. 170 (pp 558-577)Article | https://doi.org/10.1016/j.apal.2018.12.005 | UvA-DARE
-
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J. (2021) The McKinsey-Tarski theorem for locally compact ordered spaces.The Bulletin of Symbolic Logic, Vol. 27 (pp 187-211)Article | https://doi.org/10.1017/bsl.2021.16 | UvA-DARE
-
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J. (2021) Characterizing existence of a measurable cardinal via modal logic.Journal of Symbolic Logic, Vol. 86 (pp 162-177)Article | https://doi.org/10.1017/jsl.2021.5 | UvA-DARE
-
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J. (2021) Tree-like constructions in topology and modal logic.Archive for Mathematical Logic, Vol. 60 (pp 265–299)Article | https://doi.org/10.1007/s00153-020-00743-6 | UvA-DARE
-
Bezhanishvili, G., Bezhanishvili, N., Moraschini, T., Stronkowski, M. (2021) Profiniteness and representability of spectra of Heyting algebras.Advances in Mathematics, Vol. 391Article | https://doi.org/10.1016/j.aim.2021.107959 | UvA-DARE
-
Bezhanishvili, G., Bezhanishvili, N., Santoli, T., Venema, Y. (2019) A strict implication calculus for compact Hausdorff spaces.Annals of Pure and Applied Logic, Vol. 170Article | https://doi.org/10.1016/j.apal.2019.06.003 | UvA-DARE
-
Bezhanishvili, G., Bezhanishvili, N., Sourabh, S., Venema, Y. (2017) Irreducible equivalence relations, Gleason spaces, and de Vries duality.Applied Categorical Structures, Vol. 25 (pp 381-401)Article | https://doi.org/10.1007/s10485-016-9434-2 | UvA-DARE
-
Bezhanishvili, G., Bezhanishvili, N. (2016) An algebraic approach to filtrations for superintuitionistic logics.In van Eijk, J. Iemhoff, R. Joosten, J.J. (Eds.), Liber Amicorum Alberti: a tribute to Albert Visser (pp 47-56) (Tributes, Vol. 30). College Publications.Chapter | UvA-DAREBezhanishvili, G., Bezhanishvili, N. (2017) Locally finite reducts of Heyting algebras and canonical formulas.Notre Dame Journal of Formal Logic, Vol. 58 (pp 21-45)Bezhanishvili, G., Gehrke, M., van Benthem, J.F.A.K. (2003) Euclidean hierarchy in modal logic.Studia Logica, Vol. 75 (pp 327-344)Article | UvA-DAREBezhanishvili, G., Harding, J., Ilin, J., Lauridsen, F.M. (2018) MacNeille transferability and stable classes of Heyting algebras.Algebra Universalis, Vol. 79Article | https://doi.org/10.1007/s00012-018-0534-8 | UvA-DAREBezhanishvili, G., Vosmaer, J. (2008) Comparison of Macneille, canonical, and profinite completions.Order, Vol. 25 (pp 299-320)Article | https://doi.org/10.1007/s11083-008-9095-3 | UvA-DAREBezhanishvili, N., Baltag, A., Fernández-Duque, D. (2023) The topological mu-calculus: completeness and decidability.Journal of the Association for Computing Machinery, Vol. 70Article | https://doi.org/10.48550/arXiv.2105.08231 | UvA-DAREBezhanishvili, N., Carai, L., Ghilardi, S., Landi, L. (2023) Admissibility of Π2-inference rules: Interpolation, model completion, and contact algebras.Annals of Pure and Applied Logic, Vol. 174Article | https://doi.org/10.48550/arXiv.2201.06076 | UvA-DAREBezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M. (2022) Geometric model checking of continuous space.Logical Methods in Computer Science, Vol. 18Article | https://doi.org/10.46298/lmcs-18(4:7)2022 | UvA-DAREBezhanishvili, N., Colacito, A., de Jongh, D. (2019) A study of subminimal logics of negation and their modal companions.In Silva, A. Staton, S. Sutton, P. Umbach, C. (Eds.), Language, Logic, and Computation: 12th International Tbilisi Symposium, TbiLLC 2017, Lagodekhi, Georgia, September 18-22, 2017 : revised selected papers (pp 21-41) (Lecture Notes in Computer Science
FoLLI Publications on Logic, Language and Information, Vol. 11456). Springer.Conference contribution | https://doi.org/10.1007/978-3-662-59565-7_2 | UvA-DAREBezhanishvili, N., Coumans, D., van Gool, S.J., de Jongh, D. (2015) Duality and universal models for the meet-implication fragment of IPC.In Aher, M. Hole, D. Jeřábek, E. Kupke, C. (Eds.), Logic, Language, and Computation: 10th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2013, Gudauri, Georgia, September 23-27, 2013: revised selected papers (pp 97-116) (Lecture Notes in Computer Science, Vol. 8984). Springer.Conference contribution | https://doi.org/10.1007/978-3-662-46906-4_7 | UvA-DAREBezhanishvili, N., de Groot, J., Venema, Y. (2019) Coalgebraic Geometric Logic.In Roggenbach, M. Sokolova, A. (Eds.), 8th Conference on Algebra and Coalgebra in Computer Science: CALCO 2019, June 3-6, 2019, London, United Kingdom (Leibniz International Proceedings in Informatics, Vol. 139). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.Conference contribution | https://doi.org/10.4230/LIPIcs.CALCO.2019.7 | UvA-DAREBezhanishvili, N., de Groot, J., Venema, Y. (2022) Coalgebraic geometric logic: Basic theory.Logical Methods in Computer Science, Vol. 18Article | https://doi.org/10.46298/LMCS-18(4:10)2022 | UvA-DAREThe data of this list is taken from the Pure database. If you find output is missing from the list, please follow the previous link to find out how to submit to Pure. In case there are mistakes in PURE, please contact illc at uva.nl