-
Bezhanishvili, N., de Jongh, D., Tzimoulis, A., Zhao, Z. (2017) Universal models for the positive fragment of intuitionistic logic.In Hansen, H.H. Murray, S.E. Sadrzadeh, M. Zeevat, H. (Eds.), Logic, Language, and Computation: 11th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2015, Tbilisi, Georgia, September 21-26, 2015 : revised selected papers (pp 229-250) (Lecture Notes in Computer Science
FoLLI Publications on Logic, Language and Information, Vol. 10148). Springer.Conference contribution | https://doi.org/10.1007/978-3-662-54332-0_13 | UvA-DAREBezhanishvili, N., de Jongh, D. (2005) Intuitionistic Logic.ESSLLI Course Notes. Hariot Watt University.Report | http://www.macs.hw.ac.uk/esslli05 | UvA-DAREBezhanishvili, N., de Jongh, D. (2012) Extendible Formulas in Two Variables in Intuitionistic Logic.Studia Logica, Vol. 100 (pp 61-89)Article | https://doi.org/10.1007/s11225-012-9389-8 | UvA-DAREBezhanishvili, N., de Jongh, D. (2018) Stable formulas in intuitionistic logic.Notre Dame Journal of Formal Logic, Vol. 59 (pp 307-324)Article | https://doi.org/10.1215/00294527-2017-0030 | UvA-DAREBezhanishvili, N., Enqvist, S., de Groot, J. (2020) Duality for instantial neighbourhood logic via coalgebra.In Petrişan, D. Rot, J. (Eds.), Coalgebraic Methods in Computer Science: 15th IFIP WG 1.3 International Workshop, CMCS 2020, colocated with ETAPS 2020, Dublin, Ireland, April 25–26, 2020 : proceedings (pp 32-54) ( Lecture Notes in Computer Science, Vol. 12094). Springer.Conference contribution | https://doi.org/10.1007/978-3-030-57201-3_3 | UvA-DAREJournal of Logic and Computation, Vol. 20 (pp 1017-1040)Article | https://doi.org/10.1093/logcom/exn091 | UvA-DAREBezhanishvili, N., Gabelaia, D., Ghilardi, S., Jibladze, M. (2016) Admissible bases via stable canonical rules.Studia Logica, Vol. 104 (pp 317-341)Article | https://doi.org/10.1007/s11225-015-9642-z | UvA-DAREBezhanishvili, N., Galatos, N., Spada, L. (2017) Canonical formulas for k-potent commutative, integral, residuated lattices.Algebra Universalis, Vol. 77 (pp 321-343)Article | https://doi.org/10.1007/s00012-017-0430-7 | UvA-DAREBezhanishvili, N., Ghilardi, S., Jibladze, M. (2014) Free modal algebras revisited: the step-by-step method.In Bezhanishvili, G. (Eds.), Leo Esakia on Duality in Modal and Intuitionistic Logics (pp 43-62) (Outstanding contributions to logic, Vol. 4). Springer.Chapter | https://doi.org/10.1007/978-94-017-8860-1_3 | UvA-DAREBezhanishvili, N., Ghilardi, S., Landi, L. (2020) Model completeness and Π2-rules: the case of contact algebras.In Olivetti, N. Verbrugge, R. Negri, S. Sandu, G. (Eds.), Advances in Modal Logic: AiML 13 (pp 115-132). College Publications.Conference contribution | https://staff.fnwi.uva.nl/n.bezhanishvili/Papers/AiML2020.pdf | UvA-DAREBezhanishvili, N., Ghilardi, S., Lauridsen, F.M. (2017) One-step Heyting algebras and hypersequent calculi with the bounded proof property.Journal of Logic and Computation, Vol. 27 (pp 2135–2169)Article | https://doi.org/10.1093/logcom/exw029 | UvA-DAREBezhanishvili, N., Ghilardi, S. (2014) The bounded model property via step algebras and step frames.Annals of Pure and Applied Logic, Vol. 165 (pp 1832-1863)Article | https://doi.org/10.1016/j.apal.2014.07.005 | UvA-DAREBezhanishvili, N., Ghilardi, S. (2014) Multiple-conclusion rules, hypersequent syntax and step frames.In Goré, R. Kooi, B. Kurucz, A. (Eds.), Advances in Modal Logic: AiML 10 (pp 54-73). College Publications.Conference contribution | http://www.aiml.net/volumes/volume10/Bezhanishvili-Ghilardi.pdf | UvA-DAREBezhanishvili, N., Grilletti, G., Holliday, W.H. (2019) Algebraic and Topological Semantics for Inquisitive Logic via Choice-Free Duality.In Iemhoff, R. Moortgat, M. de Queiroz, R. (Eds.), Logic, Language, Information, and Computation: 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2-5, 2019 : proceedings (pp 35-52) (Lecture Notes in Computer Science
FoLLI Publications on Logic, Language and Information, Vol. 11541). Springer.Conference contribution | https://doi.org/10.1007/978-3-662-59533-6_3 | UvA-DAREBezhanishvili, N., Grilletti, G., Quadrellaro, D.E. (2022) An algebraic approach to inquisitive and DNA-logics.Review of Symbolic Logic, Vol. 15 (pp 950-990)Article | https://doi.org/10.1017/S175502032100054X | UvA-DAREBezhanishvili, N., Henke, T. (2020) A model-theoretic approach to descriptive general frames: the van Benthem characterization theorem.Journal of Logic and Computation, Vol. 30 (pp 1331-1355)Article | https://doi.org/10.1093/logcom/exaa040 | UvA-DAREBezhanishvili, N., Hodkinson, I. (2003) All normal extensions of S5-squared are finitely axiomatizable.Technical Reports. Institute for Logic, Language and Computation.Working paper | UvA-DAREBezhanishvili, N., Hodkinson, I. (2004) All normal extensions of S5-squared are finitely axiomatizable.Studia Logica, Vol. 78 (pp 443-457)Article | UvA-DAREBezhanishvili, N., Holliday, W.H. (2020) Choice-free Stone duality.Journal of Symbolic Logic, Vol. 85 (pp 109-148)Article | https://doi.org/10.1017/jsl.2019.11 | UvA-DAREBezhanishvili, N., Kupke, C. (2016) Games for topological fixpoint logic.Electronic Proceedings in Theoretical Computer Science, Vol. 226 (pp 46-60)Article | https://doi.org/10.4204/EPTCS.226.4 | UvA-DAREThe data of this list is taken from the Pure database. If you find output is missing from the list, please follow the previous link to find out how to submit to Pure. In case there are mistakes in PURE, please contact illc at uva.nl