Searchable List of Research Output

Filter Publications
  • Honingh, A., Bod, R. (2010) Pitch class set categories as analysis tools for degrees of tonality.
    In Downie, J.D. Veltkamp, R.C. (Eds.), ISMIR 2010 : proceedings of the 11th International Society for Music Information Retrieval Conference: August 9-13, 2010, Utrecht, Netherlands (pp 459-464). International Society for Music Information Retrieval.
  • Honingh, A., Bod, R. (2011) In search of universal properties of musical scales.
    Journal of New Music Research, Vol. 40 (pp 81-89)
  • Honingh, A., Bod, R. (2011) Clustering and classification of music using interval categories.
    In Agon, C. Andreatta, M. Assayag, G. Amiot, E. Bresson, J. Mandereau, J. (Eds.), Mathematics and Computation in Music: third international conference, MCM 2011, Paris, France, June 15-17, 2011 : proceedings (pp 346-349) (Lecture Notes in Computer Science
    Lecture Notes in Artificial Intelligence, Vol. 6726). Springer.
  • Honingh, A., Panteli, M., Brockmeier, T., López Mejía, D.I., Sadakata, M. (2015) Perception of timbre and rhythm similarity in Electronic Dance Music.
    Journal of New Music Research, Vol. 44 (pp 373-390)
  • Honingh, A., Volk, A. (2009) Mathematische muziektheorie: Nieuwe mogelijkheden voor muziekgerelateerd onderzoek.
    Dutch Journal of Music Theory, Vol. 14 (pp 181-193)
  • Honingh, A., Weyde, T., Conklin, D. (2009) Sequential association rules in atonal music.
    In Chew, E. Childs, A. Chuan, C.-H. (Eds.), Mathematics and Computation in Music: Second International Conference, MCM 2009, John Clough Memorial Conference, New Haven, CT, USA, June 19-22, 2009 : proceedings (pp 130-138) (Communications in Computer and Information Science, Vol. 38). Springer.
  • Honingh, A.K., Bod, R. (2004) The Notion of Convexity in Music.
    In Bilotta, E. Buzzanca, G. Cafagna, V Di Maio, G. Francaviglia, M. Nottoli, G. Olivetti Belardinelli, M. Patano, P. Tarabella, L. (Eds.), Creativity and Sciences. Seconda Universita degli Studi di Napoli.
    Conference contribution | UvA-DARE
  • Honingh, A.K., Bod, R. (2005) Convexity and the Well-Formedness of Musical Objects.
    Journal of New Music Research, Vol. 34 (pp 293-303)
  • Honingh, A.K., Burgoyne, J.A., van Kranenburg, P., Volk, A. (2014) Strengthening Interdisciplinarity in MIR: Four Examples of Using MIR Tools for Musicology.
    Institute for Logic, Language, and Computation. University of Amsterdam.
  • Honingh, A.K., Schuijer, M.C. (2013) Muziek uitgedrukt in getallen: de toonklasseverzamelingentheorie en haar toepassingen.
    zebra. Epsilon Uitgaven.
  • Honingh, A.K., Volk, A. (2013) Computationele muziekwetenschap: Een nieuw perspectief op muziek.
    De Groene Amsterdammer, online bijlage
    Article | UvA-DARE
  • Honingh, A.K. (2003) Measures of consonance in a goodness-of-fit model for equal tempered scales.
    In Kong, H.C. Tan, B.T.G. (Eds.), Boundaryless music (pp 435-438). International Computer Music Association.
    Conference contribution | UvA-DARE
  • Honingh, A.K. (2003) Group theoretic description of just intonation.
    In Buzzanca, G. Di Maio, G. Nottoli, G. Olivetti Belardinelli, M. Riecan, B. (Eds.), Creativity and sciences. Seconda Universita degli Studi di Napoli.
    Conference contribution | UvA-DARE
  • Honingh, A.K. (2004) Limitations on Fixed n-Tone Equal Tempered Divisions.
    In Bilotta, E. Buzzanca, G. Cafagna, V. Di Maio, G. Francaviglia, M. Nottoli, G. Olivetti Belardinelli, M. Pantano, P. Tarabella, L. (Eds.), Creativity and Sciences. Seconda Universita degli Studi di Napoli.
    Conference contribution | UvA-DARE
  • Honingh, A.K. (2006) Pitch spelling using compactness..
    In Ninth International Conference on Music Perception and Cognition (ICMPC 9). CD-rom.
    Conference contribution | UvA-DARE
  • Honingh, A.K. (2006) Convexity and compactness as models for the preferred intonation of chords.
    In Ninth International Conference on Music Perception and Cognition (ICMPC 9). CD-rom.
    Conference contribution | UvA-DARE
  • Honingh, A.K. (2006) The origin and well-formedness of tonal pitch structures.
    ILLC.
    Thesis, fully internal | UvA-DARE
  • Honingh, A.K. (2009) Compactness in the Euler-lattice: A parsimonious pitch spelling model.
    Musicae Scientiae, Vol. 13 (pp 117-138)
  • Hoogland, E., Marx, M. (2000) Interpolation in guarded fragments.
    Technical Report. Institute for Logic Language and Computation.
    Working paper | UvA-DARE
  • Hoogland, E., Marx, M. (2002) Interpolation in the guarded fragment.
    Studia Logica, Vol. 70 (pp 273-409)
    Article | UvA-DARE

The data of this list is taken from the Pure database. If you find output is missing from the list, please follow the previous link to find out how to submit to Pure. In case there are mistakes in PURE, please contact