-
Buhrman, H., Cleve, R., Laurent, M., Linden, N., Schrijver, A., Unger, F.P. (2006) New limits on fault-tolerant quantum computation.In 47th Annual IEEE Symposium on Foundations of Computer Science (pp 411-419)Conference contribution | UvA-DAREBuhrman, H., Cleve, R., Massar, S., de Wolf, R. (2010) Nonlocality and communication complexity.Reviews of Modern Physics, Vol. 82 (pp 665-698)Article | https://doi.org/10.1103/RevModPhys.82.665 | UvA-DAREBuhrman, H., Cleve, R., van Dam, W.K., Hoyer, P., Tapp, A. (1997) Multiparty quantum communication complexity..Technical Report quant-ph. Unknown Publisher.Report | UvA-DAREBuhrman, H., Cleve, R., van Dam, W.K. (1997) Quantum entanglement and communication complexity..Technical Report quant-ph. Unknown Publisher.Report | UvA-DAREBuhrman, H., Cleve, R., Watrous, J., de Wolf, R. (2001) Quantum fingerprinting.Physical Review Letters, Vol. 87Article | UvA-DAREBuhrman, H., Czekaj, Łukasz, Grudka, Andrzej, Horodecki, M., Horodecki, P., Markiewicz, Marcin, Speelman, F., Strelchuk, Sergii (2016) Quantum communication complexity advantage implies violation of a Bell inequality.Proceedings of the National Academy of Sciences of the United States of America, Vol. 113 (pp 3191-3196)Article | https://doi.org/10.1073/pnas.1507647113 | UvA-DAREBuhrman, H., Czekaj, Łukasz, Grudka, Andrzej, Horodecki, Michalł, Horodecki, Pawelł, Markiewicz, Marcin, Speelman, F., Strelchuk, Sergii (2016) Erratum: Quantum communication complexity advantage implies violation of a Bell inequality.Proceedings of the National Academy of Sciences of the United States of America, Vol. 113Erratum / Corrigendum | https://doi.org/10.1073/pnas.1606259113 | UvA-DAREBuhrman, H., de Wolf, R. (2001) Communication complexity lower bounds by polynomials.In Proceedings of 16th IEEE Conference on Computational Complexity (pp 120-130)Conference contribution | UvA-DAREBuhrman, H., de Wolf, R. (2002) Complexity measures and decision tree complexity: a survey.Theoretical Computer Science, Vol. 288 (pp 21-43)Buhrman, H., de Wolf, R. (2003) Quantum zero error algorithms cannot be composed.Information Processing Letters, Vol. 87 (pp 79-84)Buhrman, H., Dürr, C., Heiligman, M., Hoyer, P., Magniez, F., Santha, M., de Wolf, R. (2005) Quantum Algorithms for Element Distinctness.SIAM Journal on Computing, Vol. 34 (pp 1324-1330)Article | https://doi.org/10.1137/S0097539702402780 | UvA-DAREBuhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R. (2001) Quantum algorithms for element distinctness.In In Proceedings of 16th IEEE Conference on Computational Complexity (pp 131-137)Conference contribution | UvA-DAREBuhrman, H., Fehr, S., Schaffner, C., Speelman, F. (2013) The Garden-Hose Model.In ITCS'13: proceedings of the 2013 ACM Conference on Innovations in Theoretical Computer Science : January 9-12, 2013, Berkeley, California, USA (pp 145-157). Association for Computing Machinery.Conference contribution | https://doi.org/10.1145/2422436.2422455 | UvA-DAREBuhrman, H., Fehr, S., Schaffner, C. (2014) On the Parallel Repetition of Multi-Player Games: The No-Signaling Case.In Flammia, S.T. Harrow, A.W. (Eds.), 9th Conference on the Theory of Quantum Computation, Communication and Cryptography: TQC 2014, May 21-23, 2014, National University of Singapore, Singapore (pp 24-35) (Leibniz International Proceedings in Informatics, Vol. 27). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.Conference contribution | https://doi.org/10.4230/LIPIcs.TQC.2014.24 | UvA-DAREBuhrman, H., Fenner, S., Fortnow, L., Torenvliet, L. (2001) Two oracles that force a big crunch.Computational Complexity, Vol. 10 (pp 93-116)Article | https://doi.org/10.1007/s00037-001-8190-2 | UvA-DAREBuhrman, H., Fenner, S., Fortnow, L., van Melkebeek, D. (2000) Optimal Proof Sysytems and Sparse Sets.Lecture Notes in Computer Science (pp 407-418)Article | UvA-DAREBuhrman, H., Fenner, S., Fortnow, L. (1997) Results on resource-bounded measure.In Proceedings of the 24th International Colloquium on Automata Languages and Programming (pp 188-194). Springer.Chapter | UvA-DAREBuhrman, H., Fortnow, L., Hitchcock, J.M., Loff, B. (2013) Learning reductions to sparse sets.In Chatterjee, K. Sgall, J. (Eds.), Mathematical Foundations of Computer Science 2013: 38th International Symposium, MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013 : proceedings (pp 243-253) (Lecture Notes in Computer Science, Vol. 8087). Springer.Conference contribution | https://doi.org/10.1007/978-3-642-40313-2_23 | UvA-DAREBuhrman, H., Fortnow, L., Koucký, M., Loff, B. (2010) Derandomizing from random strings.In 25th Annual IEEE Conference on Computational Complexity: proceedings : CCC 2010 : 9-11 June, 2010, Cambridge, Massachusetts, USA (pp 58-63). IEEE Computer Society.Conference contribution | https://doi.org/10.1109/CCC.2010.15 | UvA-DAREBuhrman, H., Fortnow, L., Koucký, M., Rogers, J., Vereshchagin, N.K. (2007) Inverting Onto Functions and Polynomial Hierarchy.In Computer Science - Theory and Applications (pp 92-103) (Lecture Notes in Computer Science). Springer.Chapter | UvA-DARE
The data of this list is taken from the Pure database. If you find output is missing from the list, please follow the previous link to find out how to submit to Pure. In case there are mistakes in PURE, please contact illc at uva.nl