Searchable List of Research Output

Filter Publications
  • Alechina, N.A., van Lambalgen, M. (1995) Generalized quantification as substructural logic.
    Technical Report. onbekend (FdL).
    Report | UvA-DARE
  • Alechina, N.A., van Lambalgen, M. (1995) Generalized quantification as substructural logic.
    technical Report. onbekend (FdL).
    Report | UvA-DARE
  • Alechina, N.A., van Lambalgen, M. (1996) Generalized quantification as substructural logic.
    Journal of Symbolic Logic, Vol. 61 (pp 1006-1044)
  • Alechina, N.A. (1995) On a decidable generalized quantifier logic corresponding to a decidable fragment of first-order logic.
    Journal of Logic, Language and Information, Vol. 4 (pp 177-189)
    Article | UvA-DARE
  • Alechina, N.A. (1995) Modal quantifiers.
    Institute for Logic, Language and Computation.
    Thesis, fully internal | UvA-DARE
  • Alechina, N.A. (1995) Logic with Probabilistic Operators.
    In Proceedings ACCOLADE'94 (pp 121-138)
    Chapter | UvA-DARE
  • Alechina, N.A. (1995) For All Typical.
    In Symbolic and Quantitative Approach to reasoning and Uncertainty. Proceedings ECSQARU'95 (pp 1-8). Springer.
    Chapter | UvA-DARE
  • Alechina, N.A. (1995) Logic with Probabilistic Operators.
    In Proceedings ACCOLADE'94 (pp 121-138)
    Chapter | UvA-DARE
  • Alechina, N.A. (1995) For All Typical.
    In Symbolic and Quantitative Approach to Reasoning and Uncertainty. Proceedings ECSQARU'95 (pp 1-8). Springer.
    Chapter | UvA-DARE
  • Alexiadou, A., Giannakidou, A. (1999) Specificational pseudoclefts as lists.
    In Shahin, K. Blake, S. Kim, E.-U. (Eds.), Proceedings of the West Coast Conference on Formal Linguistics (WCCFL) XVII (pp 1-16). CSLI Publications.
    Conference contribution | UvA-DARE
  • Alhama, R.G., Scha, R., Zuidema, W. (2014) Rule Learning in Humans and Animals.
    In Cartmill, E.A. Roberts, S. Lyn, H. Cornish, H. (Eds.), The Evolution of Language: proceedings of the 10th International Conference (EVOLANG10), Vienna, Austria, 14-17 April 2014 (pp 371-372). World Scientific.
  • Alhama, R.G., Scha, R., Zuidema, W. (2015) How should we evaluate models of segmentation in artificial language learning?.
    In Taatgen, N.A. van Vugt, M.K. Borst, J.P. Mehlhorn, K. (Eds.), Proceedings of ICCM 2015: 13th International Conference on Cognitive Modeling : April 9-11, Groningen, The Netherlands (pp 172-173). University of Groningen.
  • Alhama, R.G., Scha, R., Zuidema, W. (2015) How should we evaluate models of segmentation in artificial language learning?.
    Poster | UvA-DARE
  • Alhama, R.G., Scha, R.J.H., Zuidema, W. (2014) Rule Learning in Humans.
  • Alhama, R.G., Zuidema, W. (2016) Generalization in Artificial Language Learning: Modelling the Propensity to Generalize.
    In Korhonen, A. Lenci, A. Murphy, B. Poibeau, T. Villavicencio, A. (Eds.), The 54th Annual Meeting of the Association for Computational Linguistics: proceedings of the 7th Workshop on Cognitive Aspects of Computational Language Learning: August 11, 2016, Berlin, Germany (pp 64-72). Association for Computational Linguistics.
    Conference contribution | https://doi.org/10.18653/v1/W16-19 | UvA-DARE
  • Alhama, R.G., Zuidema, W. (2016) Pre-Wiring and Pre-Training: What does a neural network need to learn truly general identity rules?.
    In Besold, T.R. Bordes, A. d'Avila Garcez, A. Wayne, G. (Eds.), Proceedings of the Workshop on Cognitive Computation: Integrating neural and symbolic approaches 2016: co-located with the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016) : Barcelona, Spain, December 9, 2016 (CEUR Workshop Proceedings, Vol. 1773). CEUR-WS.
  • Alhama, R.G., Zuidema, W. (2017) Segmentation as Retention and Recognition: the R&R model.
    In Gunzelmann, G. Howes, A. Tenbrink, T. Davelaar, E.J. (Eds.), CogSci 2017: proceedings of the 39th Annual Meeting of the Cognitive Science Society : London, UK : 26-29 July 2017 : Computational Foundations of Cognition (pp 1531-1536). Cognitive Science Society.
  • Alhama, R.G., Zuidema, W. (2018) Pre-wiring and pre-training: What does a neural network need to learn truly general identity rules?.
    Journal of Artificial Intelligence Research, Vol. 61 (pp 927-946)
  • Alhama, R.G., Zuidema, W. (2019) A review of computational models of basic rule learning: The neural-symbolic debate and beyond.
    Psychonomic Bulletin and Review, Vol. 26 (pp 1174-1194)
  • Alhama, R.G. (2017) Computational modelling of Artificial Language Learning: Retention, Recognition & Recurrence.
    Thesis, fully internal | UvA-DARE

The data of this list is taken from the Pure database. If you find output is missing from the list, please follow the previous link to find out how to submit to Pure. In case there are mistakes in PURE, please contact